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Abstract The increasing volume of research by the

medical community often leads to increasing numbers of

contradictory findings and conclusions. Although the dif-

ferences observed may represent true differences, the

results also may differ because of sampling variability as

all studies are performed on a limited number of specimens

or patients. When planning a study reporting differences

among groups of patients or describing some variable in a

single group, sample size should be considered because it

allows the researcher to control for the risk of reporting a

false-negative finding (Type II error) or to estimate the

precision his or her experiment will yield. Equally impor-

tant, readers of medical journals should understand sample

size because such understanding is essential to interpret the

relevance of a finding with regard to their own patients. At

the time of planning, the investigator must establish (1) a

justifiable level of statistical significance, (2) the chances

of detecting a difference of given magnitude between the

groups compared, ie, the power, (3) this targeted difference

(ie, effect size), and (4) the variability of the data (for

quantitative data). We believe correct planning of experi-

ments is an ethical issue of concern to the entire

community.

Introduction

‘‘Statistical analysis allows us to put limits on our

uncertainty, but not to prove anything.’’—Douglas G.

Altman [1]

The growing need for medical practice based on evi-

dence has generated an increasing medical literature

supported by statistics: readers expect and presume medi-

cal journals publish only studies with unquestionable

results they can use in their everyday practice and editors

expect and often request authors provide rigorously sup-

portable answers. Researchers submit articles based on

presumably valid outcome measures, analyses, and con-

clusions claiming or implying the superiority of one

treatment over another, the usefulness of a new diagnostic

test, or the prognostic value of some sign. Paradoxically,

the increasing frequency of seemingly contradictory results

may be generating increasing skepticism in the medical

community.

One fundamental reason for this conundrum takes root

in the theory of hypothesis testing developed by Pearson

and Neyman in the late 1920s [24, 25]. The majority of

medical research is presented in the form of a comparison,

the most obvious being treatment comparisons in ran-

domized controlled trials. To assess whether the difference

observed is likely attributable to chance alone or to a true

difference, researchers set a null hypothesis that there is no

difference between the alternative treatments. They then

determine the probability (the p value), they could have

obtained the difference observed or a larger difference if

the null hypothesis were true; if this probability is below

some predetermined explicit significance level, the null

hypothesis (ie, there is no difference) is rejected. However,

regardless of study results, there is always a chance to
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conclude there is a difference when in fact there is not

(Type I error or false positive) or to report there is no

difference when a true difference does exist (Type II error

or false negative) and the study has simply failed to detect

it (Table 1). The size of the sample studied is a major

determinant of the risk of reporting false-negative findings.

Therefore, sample size is important for planning and

interpreting medical research.

For that reason, we believe readers should be adequately

informed of the frequent issues related to sample size, such

as (1) the desired level of statistical significance, (2) the

chances of detecting a difference of given magnitude

between the groups compared, ie, the power, (3) this tar-

geted difference, and (4) the variability of the data (for

quantitative data). We will illustrate these matters with a

comparison between two treatments in a surgical random-

ized controlled trial. The use of sample size also will be

presented in other common areas of statistics, such as

estimation and regression analyzes.

Desired Level of Significance

The level of statistical significance a corresponds to the

probability of Type I error, namely, the probability of

rejecting the null hypothesis of ‘‘no difference between the

treatments compared’’ when in fact it is true. The decision

to reject the null hypothesis is based on a comparison of the

prespecified level of the test arbitrarily chosen with the test

procedure’s p value. Controlling for Type I error is para-

mount to medical research to avoid the spread of new or

perpetuation of old treatments that are ineffective. For the

majority of hypothesis tests, the level of significance is

arbitrarily chosen at 5%. When an investigator chooses

a = 5%, if the test’s procedure p value computed is less

than 5%, the null hypothesis will be rejected and the

treatments compared will be assumed to be different.

To reduce the probability of Type I error, we may

choose to reduce the level of statistical significance to 1%

or less [29]. However, the level of statistical significance

also influences the sample size calculation: the lower the

chosen level of statistical significance, the larger the sam-

ple size will be, considering all other parameters remain the

same (see example below and Appendix 1). Consequently,

there are domains where higher levels of statistical

significance are used so that the sample size remains

restricted, such as for randomized Phase II screening

designs in cancer [26]. We believe the choice of a signif-

icance level greater than 5% should be restricted to

particular cases.

Power

The power of a test is defined as 1 - the probability of

Type II error. The Type II error is concluding at no dif-

ference (the null is not rejected) when in fact there is a

difference, and its probability is named b. Therefore, the

power of a study reflects the probability of detecting a

difference when this difference exists. It is also very

important to medical research that studies are planned with

an adequate power so that meaningful conclusions can be

issued if no statistical difference has been shown between

the treatments compared. More power means less risk for

Type II errors and more chances to detect a difference

when it exists.

Power should be determined a priori to be at least 80%

and preferably 90%. The latter means, if the true difference

between treatments is equal to the one we planned, there is

only 10% chance the study will not detect it. Sample size

increases with increasing power (Fig. 1).

Very commonly, power calculations have not been

performed before conducting the trial [3, 8], and when

facing nonsignificant results, investigators sometimes

compute post hoc power analyses, also called observed

power. For this purpose, investigators use the observed

difference and variability and the sample size of the trial to

determine the power they would have had to detect this

particular difference. However, post hoc power analyses

have little statistical meaning for three reasons [9, 13].

First, because there is a one-to-one relationship between p

values and post hoc power, the latter does not convey any

additional information on the sample than the former.

Second, nonsignificant p values always correspond to low

power and post hoc power, at best, will be slightly larger

than 50% for p values equal to or greater than 0.05. Third,

when computing post hoc power, investigators implicitly

make the assumption that the difference observed is clini-

cally meaningful and more representative of the truth than

the null hypothesis they precisely were not able to reject.

Table 1. Type I and Type II errors during hypothesis testing

Truth Study findings

Null hypothesis is not rejected Null hypothesis is rejected

Null hypothesis is true True negative Type I error (alpha) (False positive)

Null hypothesis is false Type II error (beta) (False negative) True positive

Volume 466, Number 9, September 2008 Sample Size and Medical Research 2283

123



However, in the theory of hypothesis testing, the difference

observed should be used only to choose between the

hypotheses stated a priori; a posteriori, the use of confi-

dence intervals is preferable to judge the relevance of a

finding. The confidence interval represents the range of

values we can be confident to some extent includes the true

difference. It is related directly to sample size and conveys

more information than p values. Nonetheless, post hoc

power analyses educate readers about the importance of

considering sample size by explicitly raising the issue.

The Targeted Difference Between the Alternative

Treatments

The targeted difference between the alternative treatments

is determined a priori by the investigator, typically based

on preliminary data. The larger the expected difference is,

the smaller the required sample size will be. However,

because the sample size based on the difference expected

may be too large to achieve, investigators sometimes

choose to power their trial to detect a difference larger than

one would normally expect to reduce the sample size and

minimize the time and resources dedicated to the trial.

However, if the targeted difference between the alternative

treatments is larger than the true difference, the trial may

fail to conclude a difference between the two treatments

when a smaller, and still meaningful, difference exists. This

smallest meaningful difference sometimes is expressed as

the ‘‘minimal clinically important difference,’’ namely,

‘‘the smallest difference in score in the domain of interest

which patients perceive as beneficial and which would

mandate, in the absence of troublesome side effects and

excessive costs, a change in the patient’s management’’

[15]. Because theoretically the minimal clinically impor-

tant difference is a multidimensional phenomenon that

encompasses a wide range of complex issues of a particular

treatment in a unique setting, it usually is determined by

consensus among clinicians with expertise in the domain.

When the measure of treatment effect is based on a score,

researchers may use empiric definitions of clinically

meaningful difference. For instance, Michener et al. [21],

in a prospective study of 63 patients with various shoulder

abnormalities, determined the minimal change perceived as

clinically meaningful by the patients for the patient self-

report section of the American Shoulder and Elbow Sur-

geons Standardized Shoulder Assessment Form was 6.7

points of 100 points. Similarly, Bijur et al. [5], in a pro-

spective cohort study of 108 adults presenting to the

emergency department with acute pain, determined the

minimal change perceived as clinically meaningful by

patients for acute pain measured on the visual analog scale

was 1.4 points. There is no reason to try to detect a dif-

ference below the minimal clinically important difference

because, even if it proves statistically significant, it will not

be meaningful.

The meaningful clinically important difference should

not be confused with the effect size. The effect size is a

dimensionless measure of the magnitude of a relation

between two or more variables, such as Cohen’s d stan-

dardized difference [6], but also odds ratio, Pearson’s r

correlation coefficient, etc. Sometimes studies are planned

−2 0 2 4 6A

n=32; power=50%
Z1−α 2 = 1.96

−2 0 2 4 6B

n=64; power=80%
Z1−α 2 = 1.96

−2 0 2 4 6C

n=85; power=90%
Z1−α 2 = 1.96

Fig. 1A–C The graphs show the distribution of the test statistic (z-

test) for the null hypothesis (plain line) and the alternative hypothesis

(dotted line) for a sample size of (A) 32 patients per group, (B) 64

patients per group, and (C) 85 patients per group. For a difference in

mean of 10, a standard deviation of 20, and a significance level a of

5%, the power (shaded area) increases from (A) 50%, to (B) 80%, and

(C) 90%. It can be seen, as power increases, the test statistics yielded

under the alternative hypothesis (there is a difference in the two

comparison groups) are more likely to be greater than the critical

value 1.96.
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to detect a particular effect size instead of being planned to

detect a particular difference between the two treatments.

According to Cohen [6], 0.2 is indicative of a small effect,

0.5 a medium effect, and 0.8 a large effect size. One of the

advantages of doing so is that researchers do not have to

make any assumptions regarding the minimal clinically

important difference or the expected variability of the data.

The Variability of the Data

For quantitative data, researchers also need to determine

the expected variability of the alternative treatments: the

more variability expected in the specified outcome, the

more difficult it will be to differentiate between treatments

and the larger the required sample size (see example

below). If this variability is underestimated at the time of

planning, the sample size computed will be too small and

the study will be underpowered to the one desired. For

comparing proportions, the calculation of sample size

makes use of the expected proportion with the specified

outcome in each group. For survival data, the calculation of

sample size is based on the survival proportions in each

treatment group at a specified time and on the total number

of events in the group in which the fewer events occur.

Therefore, for the latter two types of data, variability does

not appear in the computation of sample size.

Example

Presume an investigator wants to compare the postopera-

tive Harris hip score [12] at 3 months in a group of patients

undergoing minimally invasive THA with a control group

of patients undergoing standard THA in a randomized

controlled trial. The investigator must (1) establish a sta-

tistical significance level, eg, a = 5%, (2) select a power,

eg, 1 - b = 90%, and (3) establish a targeted difference in

the mean scores, eg, 10, and assume a standard deviation of

the scores, eg, 20 in both groups (which they can obtain

from the literature or their previous patients). In this case,

the sample size should be 85 patients per group (Appendix

1). If fewer patients are included in the trial, the probability

of detecting the targeted difference when it exists will

decrease; for sample sizes of 64 and 32 per group, for

instance, the power decreases to 80% and 50%, respec-

tively (Fig. 1). If the investigator assumed the standard

deviation of the scores in each group to be 30 instead of 20,

a sample size of 190 per group would be necessary to

obtain a power of 90% with a significance level a = 5%

and targeted difference in the mean scores of 10. If the

significance level was chosen at a = 1% instead of

a = 5%, to yield the same power of 90% with a targeted

difference in scores of 10 and standard deviation of 20, the

sample size would increase from 85 patients per group to

120 patients per group. In relatively simple cases, statistical

tables [19] and dedicated software available from the

internet may be used to determine sample size. In most

orthopaedic clinical trials cases, sample size calculation is

rather simple as above, but it will become more complex in

other cases. The type of end points, the number of groups,

the statistical tests used, whether the observations are

paired, and other factors influence the complexity of the

calculation, and in these cases, expert statistical advice is

recommended.

Sample Size, Estimation, and Regression

Sample size was presented above in the context of

hypothesis testing. However, it is also of interest in other

areas of biostatistics, such as estimation or regression.

When planning an experiment, researchers should ensure

the precision of the anticipated estimation will be adequate.

The precision of an estimation corresponds to the width of

the confidence interval: the larger the tested sample size is,

the better the precision. For instance, Handl et al. [11], in a

biomechanical study of 21 fresh-frozen cadavers, reported

a mean ultimate load failure of four-strand hamstring ten-

don constructs of 4546 N under loading with a standard

deviation of 1500 N. Based on these values, if we were to

design an experiment to assess the ultimate load failure of a

particular construct, the precision around the mean at the

95% confidence level would be expected to be 3725 N for

five specimens, 2146 N for 10 specimens, 1238 N for 25

specimens, 853 N for 50 specimens, and 595 N for 100

specimens tested (Appendix 2); if we consider the esti-

mated mean will be equal to 4546 N, the one obtained in

the previous experiment, we could obtain the correspond-

ing 95% confidence intervals (Fig. 2). Because we always

deal with limited samples, we never exactly know the true

mean or standard deviation of the parameter distribution;

otherwise, we would not perform the experiment. We only

approximate these values, and the results obtained can vary

from the planned experiment. Nonetheless, what we iden-

tify at the time of planning is that testing more than 50

specimens, for instance 100, will multiply the costs and

time necessary to the experiment while providing only

slight improvement in the precision.

Similarly, sample size issues should be considered when

performing regression analyses, namely, when trying to

assess the effect of a particular covariate, or set of covar-

iates, on an outcome. The effective power to detect the

significance of a covariate in predicting this outcome

depends on the outcome modeled [14, 30]. For instance,

when using a Cox regression model, the power of the test to
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detect the significance of a particular covariate does not

depend on the size of the sample per se but on the number

of specific critical events. In a cohort study of patients

treated for soft tissue sarcoma with various treatments,

such as surgery, radiotherapy, chemotherapy, etc, the

power to detect the effect of chemotherapy on survival will

depend on the number of patients who die, not on the total

number of patients in the cohort. Therefore, when planning

such studies, researchers should be familiar with these

issues and decide, for example, to model a composite

outcome, such as event-free survival that includes any of

the following events: death from disease, death from other

causes, recurrence, metastases, etc, to increase the power of

the test.

Discussion

The reasons to plan a trial with an adequate sample size

likely to give enough power to detect a meaningful dif-

ference are essentially ethical. Small trials are considered

unethical by most, but not all, researchers because they

expose participants to the burdens and risks of human

research with a limited chance to provide any useful

answers [2, 10, 28]. Underpowered trials also ineffectively

consume resources (human, material) and add to the cost of

healthcare to society. Although there are particular cases

when trials conducted on a small sample are justified, such

as early-phase trials with the aim of guiding the conduct of

subsequent research (or formulating hypotheses) or, more

rarely, for rare diseases with the aim of prospectively

conducting meta-analyses, they generally should be

avoided [10]. It is also unethical to conduct trials with too

large a sample size because, in addition to the waste of time

and resources, they expose participants in one group to

receive inadequate treatment after appropriate conclusions

should have been reached. Interim analyses and adaptive

trials have been developed in this context to shorten the

time to decision and overcome these concerns [4, 16].

We raise two important points. First, we explained, for

practical and ethical reasons, experiments are conducted on

a sample of limited size with the aim to generalize the

results to the population of interest and increasing the size

of the sample is a way to combat uncertainty. When doing

this, we implicitly consider the patients or specimens in the

sample are randomly selected from the population of

interest, although this is almost never the case; even if it

were the case, the population of interest would be limited

in space and time. For instance, Marx et al. [20], in a

survey conducted in late 1998 and early 1999, assessed the

practices for anterior cruciate ligament reconstruction on a

randomly selected sample of 725 members of the American

Academy of Orthopaedic Surgeons; however, because only

½ the surgeons responded to the survey, their sample

probably is not representative of all members of the soci-

ety, who in turn are not representative of all orthopaedic

surgeons in the United States, who again are not repre-

sentative of all surgeons in the world because of the

numerous differences among patients, doctors, and

healthcare systems across countries. Similar surveys con-

ducted in other countries have provided different results

[17, 22]. Moreover, if the same survey was conducted

today, the results would possibly differ. Therefore, another

source for variation among studies, apart from sampling

variability, is that samples may not be representative of the

same population. Therefore, when planning experiments,

researchers must take care to make their sample represen-

tative of the population they want to infer to and readers,

when interpreting the results of a study, should always

assess first how representative the sample presented is

regarding their own patients. The process implemented to

select the sample, the settings of the experiment, and the

general characteristics and influencing factors of the

patients must be described precisely to assess representa-

tiveness and possible selection biases [7].

Second, we have discussed only sample size for inter-

preting nonsignificant p values, but it also may be of

interest when interpreting p values that are significant.

Significant results issued from larger studies usually are

given more credit than those from smaller studies because

of the risk of reporting exaggerating treatment effects with

studies with smaller samples or of lower quality [23, 27],

and small trials are believed to be more biased than others.

However, there is no statistical reason a significant result in

a trial including 2000 patients should be given more belief

Fig. 2 The graph shows the predicted confidence interval for

experiments with an increasing number of specimens tested based

on the study by Handl et al. [11] of 21 fresh-frozen cadavers with a

mean ultimate load failure of four-strand hamstring tendon constructs

of 4546 N and standard deviation of 1500 N.

2286 Biau et al. Clinical Orthopaedics and Related Research

123



than a trial including 20 patients, given the significance

level chosen is the same in both trials. Small but well-

conducted trials may yield a reliable estimation of treat-

ment effect. Kjaergard et al. [18], in a study of 14 meta-

analyses involving 190 randomized trials, reported small

trials (fewer than 1000 patients) reported exaggerated

treatment effects when compared with large trials. How-

ever, when considering only small trials with adequate

randomization, allocation concealment (allocation con-

cealment is the process that keeps clinicians and

participants unaware of upcoming assignments. Without it,

even properly developed random allocation sequences can

be subverted), and blinding, this difference became negli-

gible. Nonetheless, the advantages of a large sample size to

interpret significant results are it allows a more precise

estimate of the treatment effect and it usually is easier to

assess the representativeness of the sample and to gener-

alize the results.

Sample size is important for planning and interpreting

medical research and surgeons should become familiar

with the basic elements required to assess sample size and

the influence of sample size on the conclusions. Controlling

for the size of the sample allows the researcher to walk a

thin line that separates the uncertainty surrounding studies

with too small a sample size from studies that have failed

practical or ethical considerations because of too large a

sample size.
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Appendix 1

The sample size (n) per group for comparing two means

with a two-sided two-sample t test is

n ¼
2� ðz1�a=2 þ z1�bÞ2

d2
t

þ 0:25� z2
1�a=2

where z1-a/2 and z1-b are standard normal deviates for the

probability of 1 - a/2 and 1 - b, respectively, and dt =

(l0 - l1)/r is the targeted standardized difference

between the two means.

The following values correspond to the example:

a = 0.05 (statistical significance level)

b = 0.10 (power of 90%)

|l0 - l1| = 10 (difference in the mean score between

the two groups)

r = 20 (standard deviation of the score in each group)

z1-a/2 = 1.96

z1-b = 1.28

Therefore:

n ¼ 2� ð1:96þ 1:28Þ2

ð10=20Þ2
þ 0:25� 1:962 ¼ 85:

Two-sided tests which do not assume the direction of the

difference (ie, that the mean value in one group would

always be greater than that in the other) are generally

preferred. The null hypothesis makes the assumption that

there is no difference between the treatments compared,

and a difference on one side or the other therefore is

expected.

Appendix 2

Computation of Confidence Interval

To determine the estimation of a parameter, or alternatively

the confidence interval, we use the distribution of the

parameter estimate in repeated samples of the same size.

For instance, consider a parameter with observed mean, m,

and standard deviation, sd, in a given sample. If we assume

that the distribution of the parameter in the sample is close

to a normal distribution, the means, xn, of several repeated

samples of the same size have true mean, l, the population

mean, and estimated standard deviation,

se ¼ sd=
p

n; ð1Þ

also known as standard error of the mean, and

xn � lð Þ=se ð2Þ

follows a t distribution. For a large sample, the t distribu-

tion becomes close to the normal distribution; however, for

a smaller sample size the difference is not negligible and

the t distribution is preferred. The precision of the esti-

mation is

2� t 1�a=2ð Þ; n�1 � se; ð3Þ

and the confidence interval for l is the range of values

extending either side of the sample mean m by

t 1�a=2ð Þ; n�1 � se: ð4Þ

For example, Handl et al. [11] in a biomechanical study

of 21 fresh-frozen cadavers reported a mean ultimate load

failure of 4-strand hamstring tendon constructs of 4546 N

under dynamic loading with standard deviation of 1500 N.

If we were to plan an experiment, the anticipated precision

of the estimation at the 95% level would be

2� 2:78� 1500=
p

5ð Þ ¼ 3725 ð5Þ
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for five specimens,

2� 2:26� 1500=
p

10ð Þ ¼ 2146 for 10 specimens; ð6Þ

2� 2:06� 1500=
p

25ð Þ ¼ 1238 for 25 specimens; ð7Þ

2� 2:01� 1500=
p

50ð Þ ¼ 853 for 50 specimens; ð8Þ

and 2� 1:98� 1500=
p

100ð Þ ¼ 595 for 100 specimens.

ð9Þ

The values 2.78, 2.26, 2.06, 2.01, and 1.98 correspond to

the t distribution deviates for the probability of 1 - a/2, with

4, 9, 24, 49, and 99 (n - 1) degrees of freedom; the well

known corresponding standard normal deviate is 1.96. Given

an estimated mean of 4546 N, the corresponding 95%

confidence intervals are 2683 N to 6408 N for five

specimens, 3473 N to 5619 N for 10 specimens, 3927 N to

5165 N for 25 specimens, 4120 N to 4972 N for 50

specimens, and 4248 N to 4844 N for 100 specimens (Fig. 2).

Similarly, for a proportion p in a given sample with

sufficient sample size to assume a nearly normal distribu-

tion, the confidence interval extends either side of the

proportion p by

z 1�a=2ð Þ � se with se ¼ pp 1� pð Þ=n: ð10Þ

For a small sample size, exact confidence interval for

proportions should be used.
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